11th PAGEV Turkish Plastic Industry Congress # Future of Automotive Industry and Innovation Michael Weiss ## Key global automotive trends are driving OEMs towards light weighting and strength improvement of vehicles ### **Key Drivers of Emerging Alternate Materials** ### **Key Global Trends** ### al Trends Key Implications for OEMs ### **Alternate Materials** - Emission norms regulation - EUVI, BSVI and CAFÉ norms (CO2) - Increased penetration of alternate powertrains - Hybrid vehicles (extra weight) - Dual fuel gas - Safety improvement - Body & structural parts - Flexible cockpit Light-weighting Strength Enhancement Durability (Longer drive cycles) ## Alternate materials offer weight & strength advantages but come at a cost of higher prices and manufacturing complexity ### **Alternate Materials Overview** | | Material | Glass FRP ¹ | Carbon FRP | Ceramics | High-end
Plastics ² | Non-Ferrous
(Al, Mg) | High Tensile
Strength Steel | |---|--|---|--|--|---|--|--| | | Parameters | | | | | | 300 | | 0 | Weight
Reduction (to
ordinary steel) | • ~60% lighter | • ~60% lighter | • ~30% lighter | LCP: ~75% lighterPA: ~80% lighterPC: ~75% lighter | Al: ~40% lighterMg: ~35% lighter | • ~0-10% lighter | | 2 | Strength | • 1500 MPa | • 750 MPa | • 200 MPa | LCP: 100 MPaPA: 80 MPaPC: 70 MPa | • Al: 500 MPa
• Mg: 150 MPa | Bainitic Steel:
1200 Mpa (3x
ordinary steel) | | 3 | Durability and
Corrosion
Resistance | Non-corrosive Susceptible to
high impact-
breaking | Corrosion
resistantCan withstand
impact | Can withstand
high heat Non-corrosive
(electrical &
chemical) | Non-corrosiveCannot withstand
high temp | Al: Moderate
durability Mg: High
durability - good
dampening
capacity | Durable but
prone to
corrosion | | 4 | Material Cost | ~4x ordinary
steel | • ~12x ordinary steel | • ~7x ordinary steel | • ~4.5x ordinary steel | • Al, Mg: 2.5x steel | Almost equal to
steel | | 5 | Current
Adoption
Stage | Nascent | Nascent | Nascent | Growth | Growth | Widespread
Adoption | | 6 | Manufacturing
Complexity | High | High | Low | Medium | Medium | Low | | 7 | Recyclability . Fiber Reinforced Polyn | Medium | High | Medium | Varies by type | High | High | ^{2.} PC: Polycarbonate, PA: Polyamide, LCP: Liquid Crystal Polymer ### Lightweight material market set to grow at 12% CAGR over the next decade ### Carbon Fiber Reinforced Plastics (CFRP) are finding applicability in multiple auto components of a vehicle ## These auto applications will grow CFRP market at 19% CAGR (from 2015 to 2025) to reach ~\$14 Bn. by 2025 globally Auto Industry Split (%) and Global Market Size (USD Bn.) ### **CFRP Industry Split (%)** ### **CFRP Auto Market Size Forecast (USD Bn.)** ### **Key Insights** - Share of Automotive CFRP in 2025 is ~double than 2020 - Aviation parts technical knowhow will be transferable to automotive parts - Auto OEMs and suppliers need to develop CFRP capabilities to become future ready e.g. BMW spent 10 years on developing CFRP - Trend towards lightweight materials is driven by - need to improve CO₂ footprint - use of alternative powertrains - Production will eventually reach sufficient volumes for mass production and guaranteed supply to OEMs by 2025 ## This market growth is driven by 50% lower weight and higher strength over steel; while cost remains a challenge ### **Benefits and Applicability of Carbon Fiber** ### **Benefits (Carbon Fiber vs Steel)** | Property | Ordinary Mild
Steel | Carbon Fiber | |----------------------|------------------------|--------------| | Material
Weight | X | 0.3 - 0.5 x | | Material Cost | у | 8 - 10 y | | Material
Strength | Z | 8 – 10 z | #### **CFRP Penetration** | Year | | | 2020 | | 2025 | | |-----------|--------|-------|--------|-------|--------|--| | Geography | | India | Global | India | Global | | | | Entry | 0 | 0 | 0 | • | | | PV | Mid | 0 | | • | | | | | Luxury | • | | | • | | | CV | | 0 | 0 | • | • | | O Low High ### **Key Insights** - Weight reduction translates directly into fuel efficiency - High cost barrier to be overcome through - raw material innovation - reduction in cycle time - CFRP requires considerably less material thickness vs. steel to achieve the same strength characteristics - CFRP will find applicability largely in PVs - · Within PVs, early adoption is driven by - Electric vehicles (BMW i3) - Fuel cell vehicles (Toyota Toray) - High-end cars (Audi R8) - CFRP relevance in Indian cars is limited ### Increase in adoption of CFRP components is expected to take place over the next decade ### Market Size of CFRP components (USD Bn.) Moderate profits due to high investment and low sales ### **CFRP Component Manufacturers** | CFRP Component
Manufacturers | Component | |--|-----------------| | Torotrak, Crompton | Flywheel | | QA1, GKN Driveline, Precision
Shaft | Propeller Shaft | | Lacks, Carbon Revolution | Wheel | | Gurit, Polytec, Sora | Body Parts | - OEMs collaborate with material/component makers on various purposes - - To secure material supply and demand stability - To share the material/component development cost - e.g. BMW invest \$135mn in SGL to secure the stable supply of CFRP for the BMW i3/i8 released in 2013 ## While market leader has moderate profitability; Raw material continues to be major (~50%) expense ### **Market Share of CFRP Players** ### **Key Insights** Supplier Concentration - Supply primarily driven out of Japanese sources (>60%) - Small suppliers with a market share of less than 2% account for one fourth of the market Capex and R&D - Despite high entry barriers (e.g. Capex requirements, deep R&D, high contract lengths), a number of new suppliers have entered the market recently - Competitive advantage lies in R&D and continuous process innovation Raw Materials Raw material (PAN) cost is 50% of final composite cost; to decrease in future years through material innovation **Profitability** Moderately profitable segment, Suppliers need to lower cost for profitability improvement ### Glass Fiber Reinforced Polymers (GFRP) will find major applications in the powertrain and body of vehicles ### **Applicability across vehicle systems** | System | Powertrai | n | Drivetrain | Chass | sis | Body | & Interior | 'S | |-----------------|---|--------------------|--|--|---|---|--|--| | Key | Engine Cylinder head cover | Intake
manifold | Pedal | Suspension spring | Brake
disc | Front-end
structure | Door
module | Seat | | Parts | T. | | | WW. | 0 | 5 | | | | | Holds Valve the cover ove engine rocker to the arms in an | mixture | Lever to apply brake, clutch & accelerator | Absorbs
shock and
maintains
ride
stability | Part
against
which
brake pads
applied | Crash structure in the front of the car | Carrier
on which
door
compone
nts fitted | Sitting
surface
on which
cushion
is placed | | OEM
Examples | • BMW i8 | | • Porsche 918
Spyder | • Audi A6 | Avant | | Ford Focus
es Benz SL | | GFRP usage will be applicable across both structural and non-structural auto components ### This adoption will be driven by benefits such as GFRP's high strength to weight ratio compared to steel ### **Benefits (Glass Fiber vs Steel)** | Property | Ordinary Mild
Steel | Glass Fiber | |----------------------|------------------------|-------------| | Material
Weight | X | 0.3 - 0.5 x | | Material Cost | у | 2 - 3 y | | Material
Strength | Z | 4 - 5 z | #### **Key Insights** - Strength to weight ratio is very high - Since auto components use polymer reinforced with 30-40% glass fiber and not 100%, cost is not as high as it seems - Although not as strong as CFRP, there is considerable strength advantage of GFRP over steel for structural components #### **GFRP Penetration** | Year | | 2020 | | | 2025 | | |-----------|--------|-------|--------|-------|--------|--| | Geography | | India | Global | India | Global | | | | Entry | 0 | 0 | • | • | | | PV | Mid | 0 | • | • | • | | | | Luxury | • | • | • | • | | | CV | | 0 | 0 | • | | | Low High - GFRP is quickly finding applicability in PVs - 30% of intake manifolds are made of GFRP - Early adoption is driven by PVs– - Electric vehicles (BMW i8) - Sports cars (Porsche 918 Spyder) ## These auto applications will grow GFRP market at 8% CAGR (from 2015 to 2025) to reach ~USD19 Bn. by 2025 globally Auto Industry Split (%) and Global Market Size (USD Bn.) **GFRP Industry Split (%)** #### **Key Insights** - Share of auto is already significant; poised to slightly grow over the next decade - With mass production capabilities, there will be increasing use of GFRP in large sectors such as construction & infrastructure ### **GFRP Auto Market Size Forecast (USD Bn.)** - Glass fiber composites will continue to emerge as the most cost effective composite in low to mid-value applications, especially in PVs - Major adoption will be of hybrid GFRP parts and not pure GFRP parts ### With growing market and moderate EBITDA margins, GFRP landscape is seeing acquisitions across the value chain ### **Profitability & Global Trends** ### **EBITDA Margins** **Raw Material** Cost - EBITDA margins vary widely from -6-18% for glass fiber manufacturers - Innovation on the predominantly used E-glass fiber type to lower cost - Trend of thermoplastic resin replacing thermoset resin to lower costs and manufacturing time - **Machining** Cost Composite tooling cost is only 40% of steel stamping tooling cost ### **Key Acquisitions in GFRP** - Solvay, a chemical player, acquired EPIC Polymers' long-fibre thermoplastics business in 2015 - Lanxess acquired Germany's Bond-Laminates, a specialist in developing custom-made glass reinforced plastic composite sheets in 2012 - Braj Binani Group, an Indian conglomerate diversified into glass fiber by acquiring Belgiumbased 3B-the fiberglass company in 2012 #### Inorganic Growth Globally, companies are acquiring GFRP players to gain access to the growing market #### Global Scenario - US, China and Japan are largest producers and consumers of GFRP composites, accounting for >60% of the alobal market - Europe and US are leading in terms of R&D ## Thus, there are very few end to end players in the growing GFRP market; with players spread across the globe Value chain coverage of GFRP Players (2015, in kt) | • | | | |-----------------------------------|-------------------------|-----------------------| | GFRP
Component
Manufacturer | Component | Composite
Supplier | | Montaplast, ZF,
Trelleborg | Pedal | BASF,
Lanxess | | Sogefi | Suspension
Spring | Owens
Corning | | BASF-VW collaboration | Front-End
Structure | BASF, Sabic | | Faurecia | Tailgate | - | | Inalfa Roof
Systems | Sunroof
Module | Asahi Kasei | | Denso | Radiator Tank | DuPont | | Mahle | Intake
Manifold | Borealis | | Mann & Hummel | Turbocharger
Housing | - | ## GFRP manufacturing needs to be precise and requires different technological capabilities across the value chain ### **GFRP Manufacturing Process** Innovative use of plastics reinforced with glass fiber will lead to a huge market size of certain auto components Non-Exhaustive ### **Market Size of GFRP Key Auto** Components (USD Bn.) The market size of these auto components is expected to grow at a CAGR of 13% from 2015 to 2025 ### Suspension Spring Owens Corning introduced its composite material coil spring in the 2015 JEC show in Paris #### Front-End Structure - Innovation by Lanxess: plastic-metal hybrid to hydroforming-hybrid design to full plastic design - BASF has helped Volkswagen develop a part designed entirely from GFRP (PA) - Audi A6 Avant and Ford Focus use GFRP front-ends #### **Pedal** - Trelleborg Automotive makes a stamped hybrid pedal - Metal insert is over-moulded at the plastic injection stage, a process using water injection technology - ZF manufactures a pedal based on PA 66 GFRP - Eliminates need for complicated forming, cutting and welding processes required with sheet metal These top auto parts markets were analyzed across four dimensions, anticipating key automotive supply & demand characteristics ### **Automotive supply countries analysis framework** ### Top automotive supply countries | 1. China | 6. South Korea | |------------|-------------------| | 2. Japan | 7. France | | 3. US | 8. Italy | | 4. Germany | 9. Czech Republic | | 5. Mexico | 10. Poland | For comparison purposes, Turkey was also included in the analysis ### **Supply & Demand dimensions** | Cost | Cost saving opportunities regarding labor, raw materials, energy, land, etc. | |------------------------|---| | Innovation | Rising innovation demands from OEMs Need of product tailoring for local markets Skilled labor and university networks | | OEM
proximity | "Just-in-time" supply requirementsJoint product development/testing requirements | | Government regulations | Local content requirements, import tariffs Tax schemes and incentives Protected domestic markets | Suppliers may pursue expansion strategies proactively, driven by potential of new markets, but also reactively, pressured by OEMs to follow them ### Western Europe and US are attractive for suppliers due to technological capabilities and OEM proximity, but imply higher costs ### Key supplier markets assessment (1/3) NAFTA & Western Europe | | Cost competitiveness (labor, raw materials, etc.) | Technological development (skilled labor, R&D infrastructure, etc.) | Proximity to OEM assembly plants | Government regulations (local content requirements, tariffs, etc.) | |--|--|--|--|---| | Western
Europe
(Germany,
France, Italy) | Expensive labor Access to raw materials
at affordable prices (e.g.
steel) | Highly skilled labor force; potentially engineers shortage, but attract int'l talents World-class academia, R&D | The countries account for 15% of global car production Germany is home of VW, world OEM leader | High import tariffs for non-EU countries (varies by country) Fiscal incentives especially for R&D activities | | US | High labor, but low energy costs Access to raw materials High facility costs | Highly skilled labor force World-class academia,
R&D infrastructure | Accounts for 6% of global car production Home to GM and Ford (top 10 OEMs) | Very high import tariffs
(varies by country) Fiscal incentives for
high-tech components | | Mexico | Low labor cost and high productivity in dollar / hour terms Low facilities cost | Skilled workforce, but
limited innovation
infrastructure | ~3% of global car production Top OEMs assembling there: Toyota, Honda, VW, GM, Ford, Nissan, etc. | Differentiated import tariffs depending on the country of origin Valuable incentive packages for auto suppliers | ### Asia is preferred by suppliers due to technological infrastructure and OEM plant proximity; cost attractiveness varies by country ### Key supplier markets assessment (2/3) Asia | | Cost competitiveness (labor, raw materials, etc.) | Technological development (skilled labor, R&D infrastructure, etc.) | Proximity to OEM assembly plants | Government regulations (local content requirements, tariffs, etc.) | |----------------|--|---|--|--| | China | In top 5 most cost competitive countries Inland regions more attractive as coast line becomes expensive | Access to large pool of
skilled engineers Increasing technological
infrastructure following
FDIs | ~25% of global car production All major OEMs have assembly plants there Also growing local OEMs (e.g. Geely) | High import tariffs that obliges big suppliers to outsource here Moderate government incentives for foreign auto suppliers Protected domestic market | | Japan | Expensive labor force Fuels and raw materials
are imported
rising costs | Highly skilled labor force, yet aging population High tech R&D infrastructure | Accounts for 13% of global car production Home of 4 out of top 10 car manufacturers | High import tariffs Incentives for foreign investments, including auto suppliers | | South
Korea | Access to raw materials,
but expensive labor | Highly skilled labor force, esp. engineers High tech R&D infrastructure | Accounts for 6% of global car production Global OEMs with local presence Low percentage of imported cars | Imports tariffs varies by country of origin Moderate fiscal incentives | Eastern European countries are increasingly attractive as they provide good costs, government incentives, and fair technological potential ### **Key supplier markets assessment (3/3)** Eastern Europe | | Cost competitiveness (labor, raw materials, etc.) | Technological development (skilled labor, R&D infrastructure, etc.) | Proximity to OEM assembly plants | Government regulations (local content requirements, tariffs, etc.) | |-------------------|---|---|---|--| | Czech
Republic | Labor costs have risen with respect to past, low availability of manpower Affordable raw materials | Competitive technical universities → skilled labor Enhanced R&D infrastructure | Proximity to Germany and France, UK, Spain Toyota, PSA, Skoda & Hyundai have local plants | High import tariffs for non-
EU countries Investment incentives for
foreign companies,
including auto
suppliers | | Poland | Low cost labor with high productivity Access to affordable raw materials | Competitive technical universities → skilled labor Enhanced R&D infrastructure | Proximity to Germany and France, UK, Spain VW, Opel & Fiat have local assembly plants | High import tariffs for non-
EU countries High investment
incentives for auto
suppliers | | Turkey | Low cost labor, but can further improve labor market efficiency Energy import dependent Internal capabilities for plastics, but less for auto specialty steel | R&D infrastructure in place, but effectiveness potential not reached yet Room to further develop skills of technical workforce | Car production levels
similar to those in Czech
Republic Fiat/Tofaş, Oyak-Renault,
Hyundai, Toyota, Honda,
Ford/Otosan have
local plants | Generous incentives for R&D investments (esp. for special technologies, i.e. EV) and auto suppliers investments No local content requirements No or low import tariffs High tax on vehicles | Top 100 suppliers represent less than 1% of total number of players but generate 50% of revenues, indicating strong market concentration ### Auto parts industry concentration Industry revenues by supplier origin ¹ Germany accounts for only 7% of car part production, but German players in top 100 generate 12% of worldwide revenues, outlining their global footprint ### Highest number of suppliers activate in the area of less technology intensive components, while fewer offer specialized ECUs ### Suppliers' distribution by component and region (%of suppliers,) Selected components ### Suppliers in Turkey are offering primarily Body, Interior & Exterior parts, but are also active in Drive train components Supplier' distribution in "Rest of the world" (% of suppliers) Selected components