

11th PAGEV Turkish Plastic Industry Congress

Future of Automotive Industry and Innovation

Michael Weiss

Key global automotive trends are driving OEMs towards light weighting and strength improvement of vehicles

Key Drivers of Emerging Alternate Materials

Key Global Trends

al Trends Key Implications for OEMs

Alternate Materials

- Emission norms regulation
 - EUVI, BSVI and CAFÉ norms (CO2)
- Increased penetration of alternate powertrains
 - Hybrid vehicles (extra weight)
 - Dual fuel gas
- Safety improvement
 - Body & structural parts
 - Flexible cockpit

Light-weighting

Strength Enhancement

Durability (Longer drive cycles)

Alternate materials offer weight & strength advantages but come at a cost of higher prices and manufacturing complexity

Alternate Materials Overview

	Material	Glass FRP ¹	Carbon FRP	Ceramics	High-end Plastics ²	Non-Ferrous (Al, Mg)	High Tensile Strength Steel
	Parameters						300
0	Weight Reduction (to ordinary steel)	• ~60% lighter	• ~60% lighter	• ~30% lighter	LCP: ~75% lighterPA: ~80% lighterPC: ~75% lighter	Al: ~40% lighterMg: ~35% lighter	• ~0-10% lighter
2	Strength	• 1500 MPa	• 750 MPa	• 200 MPa	LCP: 100 MPaPA: 80 MPaPC: 70 MPa	• Al: 500 MPa • Mg: 150 MPa	 Bainitic Steel: 1200 Mpa (3x ordinary steel)
3	Durability and Corrosion Resistance	 Non-corrosive Susceptible to high impact- breaking 	Corrosion resistantCan withstand impact	 Can withstand high heat Non-corrosive (electrical & chemical) 	Non-corrosiveCannot withstand high temp	 Al: Moderate durability Mg: High durability - good dampening capacity 	Durable but prone to corrosion
4	Material Cost	 ~4x ordinary steel 	• ~12x ordinary steel	• ~7x ordinary steel	• ~4.5x ordinary steel	• Al, Mg: 2.5x steel	Almost equal to steel
5	Current Adoption Stage	Nascent	Nascent	Nascent	Growth	Growth	Widespread Adoption
6	Manufacturing Complexity	High	High	Low	Medium	Medium	Low
7	Recyclability . Fiber Reinforced Polyn	Medium	High	Medium	Varies by type	High	High

^{2.} PC: Polycarbonate, PA: Polyamide, LCP: Liquid Crystal Polymer

Lightweight material market set to grow at 12% CAGR over the next decade

Carbon Fiber Reinforced Plastics (CFRP) are finding applicability in multiple auto components of a vehicle

These auto applications will grow CFRP market at 19% CAGR (from 2015 to 2025) to reach ~\$14 Bn. by 2025 globally

Auto Industry Split (%) and Global Market Size (USD Bn.)

CFRP Industry Split (%)

CFRP Auto Market Size Forecast (USD Bn.)

Key Insights

- Share of Automotive CFRP in 2025 is ~double than 2020
- Aviation parts technical knowhow will be transferable to automotive parts
- Auto OEMs and suppliers need to develop CFRP capabilities to become future ready e.g. BMW spent 10 years on developing CFRP

- Trend towards lightweight materials is driven by
- need to improve CO₂ footprint
- use of alternative powertrains
- Production will eventually reach sufficient volumes for mass production and guaranteed supply to OEMs by 2025

This market growth is driven by 50% lower weight and higher strength over steel; while cost remains a challenge

Benefits and Applicability of Carbon Fiber

Benefits (Carbon Fiber vs Steel)

Property	Ordinary Mild Steel	Carbon Fiber
Material Weight	X	0.3 - 0.5 x
Material Cost	у	8 - 10 y
Material Strength	Z	8 – 10 z

CFRP Penetration

Year			2020		2025	
Geography		India	Global	India	Global	
	Entry	0	0	0	•	
PV	Mid	0		•		
	Luxury	•			•	
CV		0	0	•	•	

O Low High

Key Insights

- Weight reduction translates directly into fuel efficiency
- High cost barrier to be overcome through
 - raw material innovation
 - reduction in cycle time
- CFRP requires considerably less material thickness vs. steel to achieve the same strength characteristics

- CFRP will find applicability largely in PVs
- · Within PVs, early adoption is driven by
 - Electric vehicles (BMW i3)
 - Fuel cell vehicles (Toyota Toray)
 - High-end cars (Audi R8)
- CFRP relevance in Indian cars is limited

Increase in adoption of CFRP components is expected to take place over the next decade

Market Size of CFRP components (USD Bn.)

 Moderate profits due to high investment and low sales

CFRP Component Manufacturers

CFRP Component Manufacturers	Component
Torotrak, Crompton	Flywheel
QA1, GKN Driveline, Precision Shaft	Propeller Shaft
Lacks, Carbon Revolution	Wheel
Gurit, Polytec, Sora	Body Parts

- OEMs collaborate with material/component makers on various purposes -
 - To secure material supply and demand stability
 - To share the material/component development cost
- e.g. BMW invest \$135mn in SGL to secure the stable supply of CFRP for the BMW i3/i8 released in 2013

While market leader has moderate profitability; Raw material continues to be major (~50%) expense

Market Share of CFRP Players

Key Insights

Supplier Concentration

- Supply primarily driven out of Japanese sources (>60%)
- Small suppliers with a market share of less than 2% account for one fourth of the market

Capex and R&D

- Despite high entry barriers (e.g. Capex requirements, deep R&D, high contract lengths), a number of new suppliers have entered the market recently
- Competitive advantage lies in R&D and continuous process innovation

Raw Materials Raw material (PAN) cost is 50% of final composite cost; to decrease in future years through material innovation

Profitability

 Moderately profitable segment, Suppliers need to lower cost for profitability improvement

Glass Fiber Reinforced Polymers (GFRP) will find major applications in the powertrain and body of vehicles

Applicability across vehicle systems

System	Powertrai	n	Drivetrain	Chass	sis	Body	& Interior	'S
Key	Engine Cylinder head cover	Intake manifold	Pedal	Suspension spring	Brake disc	Front-end structure	Door module	Seat
Parts	T.			WW.	0	5		
	Holds Valve the cover ove engine rocker to the arms in an	mixture	Lever to apply brake, clutch & accelerator	Absorbs shock and maintains ride stability	Part against which brake pads applied	Crash structure in the front of the car	Carrier on which door compone nts fitted	Sitting surface on which cushion is placed
OEM Examples	• BMW i8		• Porsche 918 Spyder	• Audi A6	Avant		Ford Focus es Benz SL	

GFRP usage will be applicable across both structural and non-structural auto components

This adoption will be driven by benefits such as GFRP's high strength to weight ratio compared to steel

Benefits (Glass Fiber vs Steel)

Property	Ordinary Mild Steel	Glass Fiber
Material Weight	X	0.3 - 0.5 x
Material Cost	у	2 - 3 y
Material Strength	Z	4 - 5 z

Key Insights

- Strength to weight ratio is very high
- Since auto components use polymer reinforced with 30-40% glass fiber and not 100%, cost is not as high as it seems
- Although not as strong as CFRP, there is considerable strength advantage of GFRP over steel for structural components

GFRP Penetration

Year		2020			2025	
Geography		India	Global	India	Global	
	Entry	0	0	•	•	
PV	Mid	0	•	•	•	
	Luxury	•	•	•	•	
CV		0	0	•		

Low

High

- GFRP is quickly finding applicability in PVs
- 30% of intake manifolds are made of GFRP
- Early adoption is driven by PVs–
- Electric vehicles (BMW i8)
- Sports cars (Porsche 918 Spyder)

These auto applications will grow GFRP market at 8% CAGR (from 2015 to 2025) to reach ~USD19 Bn. by 2025 globally

Auto Industry Split (%) and Global Market Size (USD Bn.)

GFRP Industry Split (%)

Key Insights

- Share of auto is already significant; poised to slightly grow over the next decade
- With mass production capabilities, there will be increasing use of GFRP in large sectors such as construction & infrastructure

GFRP Auto Market Size Forecast (USD Bn.)

- Glass fiber composites will continue to emerge as the most cost effective composite in low to mid-value applications, especially in PVs
- Major adoption will be of hybrid GFRP parts and not pure GFRP parts

With growing market and moderate EBITDA margins, GFRP landscape is seeing acquisitions across the value chain

Profitability & Global Trends

EBITDA Margins

Raw Material Cost

- EBITDA margins vary widely from -6-18% for glass fiber manufacturers
- Innovation on the predominantly used E-glass fiber type to lower cost
- Trend of thermoplastic resin replacing thermoset resin to lower costs and manufacturing time
- **Machining** Cost

 Composite tooling cost is only 40% of steel stamping tooling cost

Key Acquisitions in GFRP

- Solvay, a chemical player, acquired EPIC Polymers' long-fibre thermoplastics business in 2015
- Lanxess acquired Germany's Bond-Laminates, a specialist in developing custom-made glass reinforced plastic composite sheets in 2012
- Braj Binani Group, an Indian conglomerate diversified into glass fiber by acquiring Belgiumbased 3B-the fiberglass company in 2012

Inorganic Growth

 Globally, companies are acquiring GFRP players to gain access to the growing market

Global Scenario

- US, China and Japan are largest producers and consumers of GFRP composites, accounting for >60% of the alobal market
- Europe and US are leading in terms of R&D

Thus, there are very few end to end players in the growing GFRP market; with players spread across the globe

Value chain coverage of GFRP Players

(2015, in kt)

•		
GFRP Component Manufacturer	Component	Composite Supplier
Montaplast, ZF, Trelleborg	Pedal	BASF, Lanxess
Sogefi	Suspension Spring	Owens Corning
BASF-VW collaboration	Front-End Structure	BASF, Sabic
Faurecia	Tailgate	-
Inalfa Roof Systems	Sunroof Module	Asahi Kasei
Denso	Radiator Tank	DuPont
Mahle	Intake Manifold	Borealis
Mann & Hummel	Turbocharger Housing	-

GFRP manufacturing needs to be precise and requires different technological capabilities across the value chain

GFRP Manufacturing Process

Innovative use of plastics reinforced with glass fiber will lead to a huge market size of certain auto components Non-Exhaustive

Market Size of GFRP Key Auto Components (USD Bn.)

The market size of these auto components is expected to grow at a CAGR of 13% from 2015 to 2025

Suspension Spring

 Owens Corning introduced its composite material coil spring in the 2015 JEC show in Paris

Front-End Structure

- Innovation by Lanxess: plastic-metal hybrid to hydroforming-hybrid design to full plastic design
- BASF has helped Volkswagen develop a part designed entirely from GFRP (PA)
- Audi A6 Avant and Ford Focus use GFRP front-ends

Pedal

- Trelleborg Automotive makes a stamped hybrid pedal
- Metal insert is over-moulded at the plastic injection stage, a process using water injection technology
- ZF manufactures a pedal based on PA 66 GFRP
 - Eliminates need for complicated forming, cutting and welding processes required with sheet metal

These top auto parts markets were analyzed across four dimensions, anticipating key automotive supply & demand characteristics

Automotive supply countries analysis framework

Top automotive supply countries

1. China	6. South Korea
2. Japan	7. France
3. US	8. Italy
4. Germany	9. Czech Republic
5. Mexico	10. Poland

For comparison purposes, Turkey was also included in the analysis

Supply & Demand dimensions

Cost	Cost saving opportunities regarding labor, raw materials, energy, land, etc.
Innovation	 Rising innovation demands from OEMs Need of product tailoring for local markets Skilled labor and university networks
OEM proximity	"Just-in-time" supply requirementsJoint product development/testing requirements
Government regulations	 Local content requirements, import tariffs Tax schemes and incentives Protected domestic markets

Suppliers may pursue expansion strategies proactively, driven by potential of new markets, but also reactively, pressured by OEMs to follow them

Western Europe and US are attractive for suppliers due to technological capabilities and OEM proximity, but imply higher costs

Key supplier markets assessment (1/3)

NAFTA & Western Europe

	Cost competitiveness (labor, raw materials, etc.)	Technological development (skilled labor, R&D infrastructure, etc.)	Proximity to OEM assembly plants	Government regulations (local content requirements, tariffs, etc.)
Western Europe (Germany, France, Italy)	 Expensive labor Access to raw materials at affordable prices (e.g. steel) 	 Highly skilled labor force; potentially engineers shortage, but attract int'l talents World-class academia, R&D 	 The countries account for 15% of global car production Germany is home of VW, world OEM leader 	 High import tariffs for non-EU countries (varies by country) Fiscal incentives especially for R&D activities
US	 High labor, but low energy costs Access to raw materials High facility costs 	 Highly skilled labor force World-class academia, R&D infrastructure 	 Accounts for 6% of global car production Home to GM and Ford (top 10 OEMs) 	 Very high import tariffs (varies by country) Fiscal incentives for high-tech components
Mexico	 Low labor cost and high productivity in dollar / hour terms Low facilities cost 	Skilled workforce, but limited innovation infrastructure	 ~3% of global car production Top OEMs assembling there: Toyota, Honda, VW, GM, Ford, Nissan, etc. 	 Differentiated import tariffs depending on the country of origin Valuable incentive packages for auto suppliers

Asia is preferred by suppliers due to technological infrastructure and OEM plant proximity; cost attractiveness varies by country

Key supplier markets assessment (2/3)

Asia

	Cost competitiveness (labor, raw materials, etc.)	Technological development (skilled labor, R&D infrastructure, etc.)	Proximity to OEM assembly plants	Government regulations (local content requirements, tariffs, etc.)
China	 In top 5 most cost competitive countries Inland regions more attractive as coast line becomes expensive 	 Access to large pool of skilled engineers Increasing technological infrastructure following FDIs 	 ~25% of global car production All major OEMs have assembly plants there Also growing local OEMs (e.g. Geely) 	 High import tariffs that obliges big suppliers to outsource here Moderate government incentives for foreign auto suppliers Protected domestic market
Japan	 Expensive labor force Fuels and raw materials are imported rising costs 	 Highly skilled labor force, yet aging population High tech R&D infrastructure 	 Accounts for 13% of global car production Home of 4 out of top 10 car manufacturers 	 High import tariffs Incentives for foreign investments, including auto suppliers
South Korea	Access to raw materials, but expensive labor	 Highly skilled labor force, esp. engineers High tech R&D infrastructure 	 Accounts for 6% of global car production Global OEMs with local presence Low percentage of imported cars 	 Imports tariffs varies by country of origin Moderate fiscal incentives

Eastern European countries are increasingly attractive as they provide good costs, government incentives, and fair technological potential

Key supplier markets assessment (3/3)

Eastern Europe

	Cost competitiveness (labor, raw materials, etc.)	Technological development (skilled labor, R&D infrastructure, etc.)	Proximity to OEM assembly plants	Government regulations (local content requirements, tariffs, etc.)
Czech Republic	 Labor costs have risen with respect to past, low availability of manpower Affordable raw materials 	 Competitive technical universities → skilled labor Enhanced R&D infrastructure 	 Proximity to Germany and France, UK, Spain Toyota, PSA, Skoda & Hyundai have local plants 	 High import tariffs for non- EU countries Investment incentives for foreign companies, including auto suppliers
Poland	 Low cost labor with high productivity Access to affordable raw materials 	 Competitive technical universities → skilled labor Enhanced R&D infrastructure 	 Proximity to Germany and France, UK, Spain VW, Opel & Fiat have local assembly plants 	 High import tariffs for non- EU countries High investment incentives for auto suppliers
Turkey	 Low cost labor, but can further improve labor market efficiency Energy import dependent Internal capabilities for plastics, but less for auto specialty steel 	 R&D infrastructure in place, but effectiveness potential not reached yet Room to further develop skills of technical workforce 	 Car production levels similar to those in Czech Republic Fiat/Tofaş, Oyak-Renault, Hyundai, Toyota, Honda, Ford/Otosan have local plants 	 Generous incentives for R&D investments (esp. for special technologies, i.e. EV) and auto suppliers investments No local content requirements No or low import tariffs High tax on vehicles

Top 100 suppliers represent less than 1% of total number of players but generate 50% of revenues, indicating strong market concentration

Auto parts industry concentration

Industry revenues by supplier origin ¹

Germany accounts for only 7% of car part production, but German players in top 100 generate 12% of worldwide revenues, outlining their global footprint

Highest number of suppliers activate in the area of less technology intensive components, while fewer offer specialized ECUs

Suppliers' distribution by component and region (%of suppliers,)

Selected components

Suppliers in Turkey are offering primarily Body, Interior & Exterior parts, but are also active in Drive train components

Supplier' distribution in "Rest of the world" (% of suppliers)

Selected components

