## High performance, efficient and flexible all electric injection moulding technologies for thin-wall containers



ENGEL



## ENGEL | Facts & Figures

| Foundation                          | 1945 by Ludwig Engel                                                     |  |
|-------------------------------------|--------------------------------------------------------------------------|--|
| Ownership                           | The company is 100% family owned                                         |  |
| Production Program                  | Injection moulding machines<br>from 28 to 5500 t clamping force & robots |  |
| Turnover ENGEL worldwide (FY 13/14) | 937 million Euro                                                         |  |
| Staff ENGEL worldwide (FY 13/14)    | 4,500 employees                                                          |  |

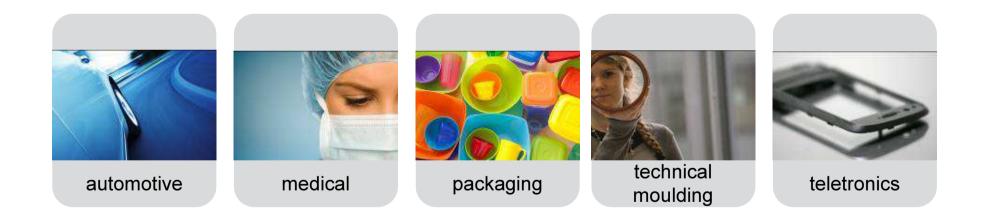


## ENGEL | Production Plants

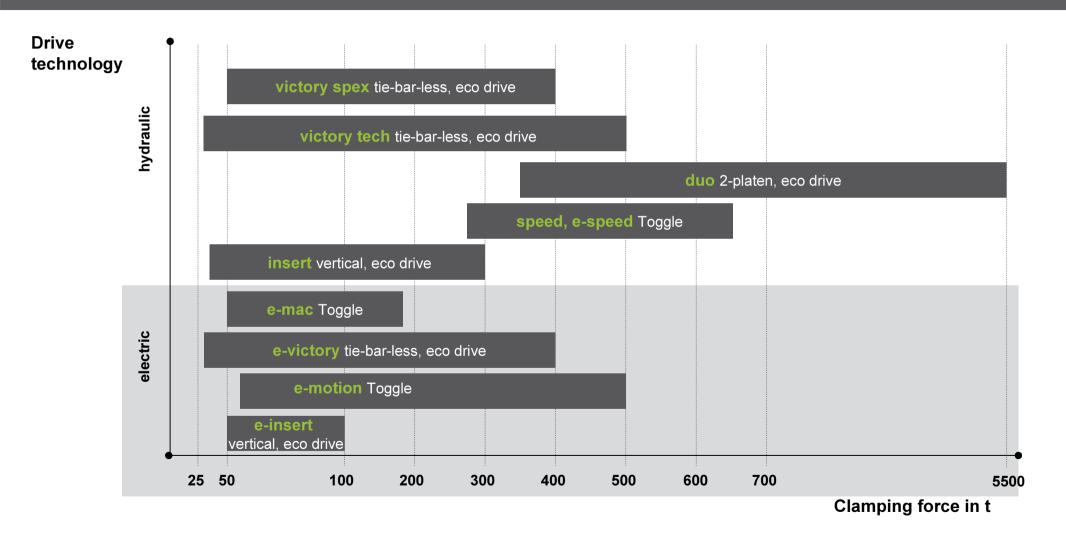












- Large-sized machines from 3,500kN to 55,000kN clamping force
  - Component manufacturing



#### ENGEL | Business Units









- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects



#### • Thin wall packaging in the 20th century

- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

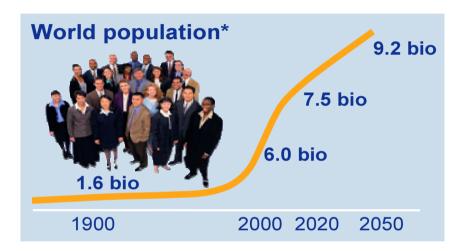
# Thin wall packaging in the 20th century

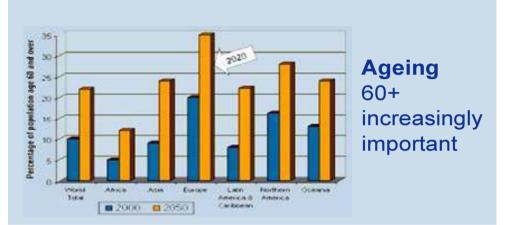


- Simple design
- Simple or no decoration
- Thicker walls
- Raw material with MFR 30-40








- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

#### **Trends - Demographic Trends**









Quelle: Präsentation Borealis 2007 – Dünnwandmarkt und -trends von Bala Kona

#### **Urbanisation**

In 2020 more than 50% of world population will live in cities



# Trends - Branding / packaging as advertising medium









## **Trends - Efficient manufacturing / Optimizing of production costs**



- Weight optimization / Thinner walls
- Output maximization / Higher cavities
- Energy savings and cycle time optimization





- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

#### **Challenges of modern food packaging**

- Unique design / high recognition value
- Smaller packaging units (for single/DINK households,...), easy to portion
- Shelf life (improved barrier features of the raw material and / or label)
- Careful handling of resources (recycling, energy saving)
- Convenience packaging (Safety-tamper evidence, transparent windows, additional functions, i.e. integrated spoon, microwave safe...)
- High quality decoration (In Mould Labelling with high-quality labels)







ENCE

## **Modern food packaging**



• Offers a special design, additional functions and acts as advertising medium





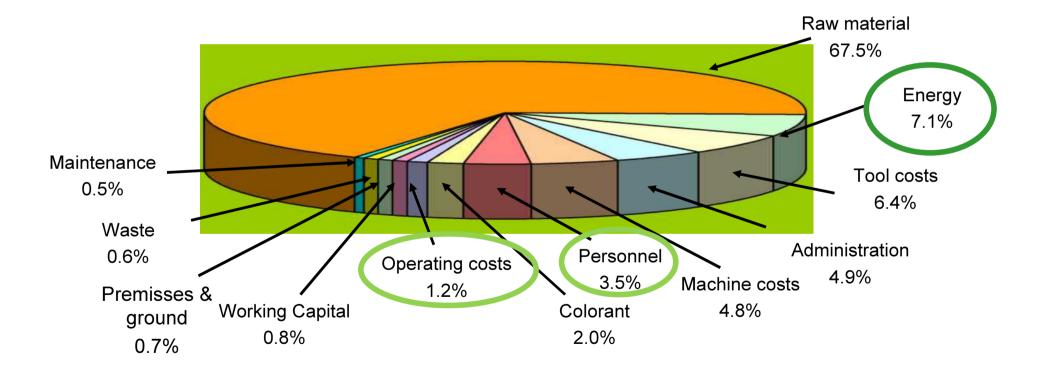


### **Modern food packaging**



• Optimized in production costs and sustainably produced








- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects



#### **Breakdown of production costs per packaging part**





#### A modern injection moulding machine for the production of packaging parts is:

- A high-performance machine
- Energy efficient: Electric
- Contributes to a sustainable production process

ENGEL



e-motion series | fully-electric high-performance machine | clamp force range 100 to 500t

All movements servo-electric





#### e-motion clamping side 5-point toggle

• Increased clamping drive for shortest dry cycle times



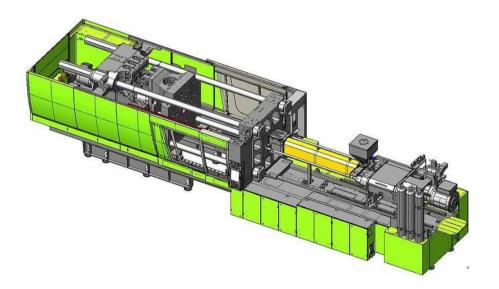


#### e-motion injection unit

• Increased drive for higher injection power

| Unit | Standard | High | Premium |
|------|----------|------|---------|
| 310  | 220      | 330  | 450     |
| 440  | 180      | 265  | 450     |
| 740  | 175      | 330  | 450     |
| 940  | 150      | 300  | 450     |
| 1340 | 210      | 250  | 400     |
| 1640 | 160      | 215  | 400     |
| 2440 | 120      | 180  | 300     |

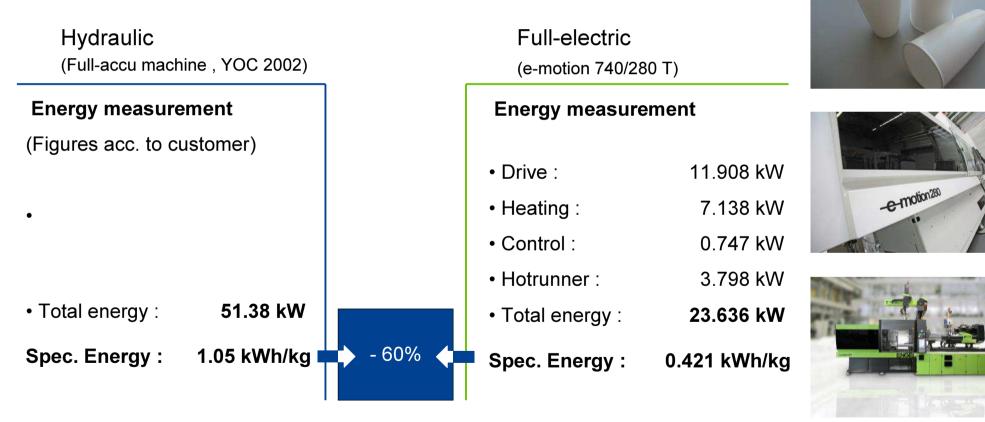



ENGEL





#### e-speed 650


• Electric high-performance machine with hydraulic for fast injection







## Cup, 6 cavities | shot weight 74.76g PP



-- confidential | for internal use only --

ENGEL

1

## Food Container, 2 cav. | shot weight 160.1 g PP

- 60%

0.792 kWh/kg

Hydraulic (speed 380/80)

**Energy measurement** 

• Drive / Hydraulic:

• Oil filtering unit :

• Total Energy :

Spec. Energy :

• Heating :

• Control :

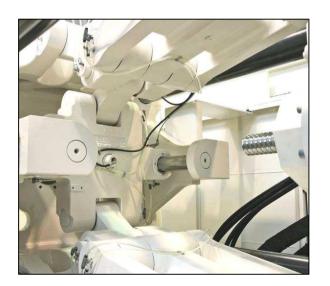


# Image: Marking Schwarz Energy measurement Image: Schwarz Image: Schwarz

0.323 kWh/kg



-- confidential | for internal use only --


Spec. Energy :



#### Product Protection with clean machines

- High Performance combined with cleanliness
  - Grease-free tie-bars, non-guiding
  - Clean toggle with oil return system







- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

## **Design requirements**



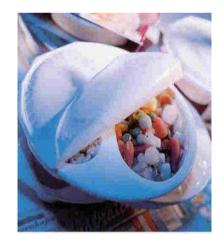
#### **Unique design**

- 2 cups in one
- 2 colors








#### **Design requirements**



#### **Multi-function – convenience packaging**

- Temper evident solutions
- Double function containers









- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

#### **Information and decoration**



Advertising on side walls and lid

Information about the product on container bottom





#### **Information and decoration**



#### High quality decoration as part of the product quality

Best quality decoration with IML









- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects

#### **Increasing shelf life/barrier technology**



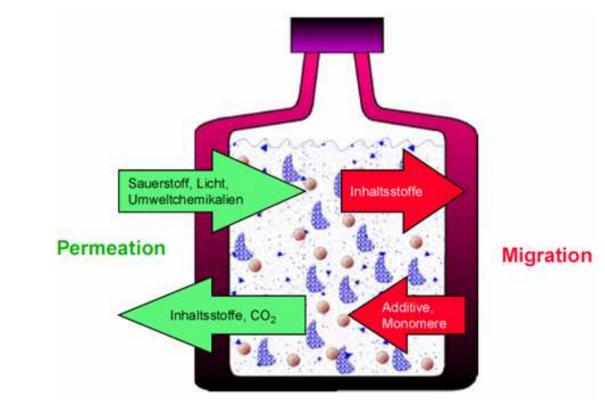
#### **Consideration of the packaging industry**

Replace glass- and metal cans with plastic containers with barrier function.

#### Advantages of plastic containers

- Flexible in design
- Lighter
- Logistic: Usually stackable

#### FROM CAN TO PLASTIC HIGH-BARRIER PLASTIC CUP FOR RETORT FOODS


- NO PRESERVATIVES NEEDED
 - STORE AT ROOM TEMPERATURE
 - LONG SHELF-LIFE
 - TRANSPARENCY
 - MICROWAVEABLE



#### **Increasing shelf life/barrier technology**

Why a barrier?





ENGEL Austria GmbH | 02. 2014, Kurt Hell | Seite 35

#### **Increasing shelf life/barrier technology**

#### **Plastic container with barrier function**

#### • Thermoformed container:

Already on the market(Packaging containers, laminat tube made of multi-layered material) Disadvantage:

- Expensive
- Less flexible in design

#### Injection-moulded container:

Already on the market: Bottles with barrier layer (2K-Preform) At the beginning: Thinwall food containers with barrier characteristics



ENGEL

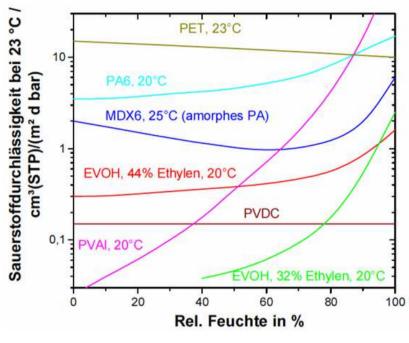






#### **Injection moulded container with barrier function**

#### • Technological approaches


- IML with barrier label (Multi-layer barrier label with EVOH layer, SIOx-coated barrier foil)
- Co-injection
- Coating





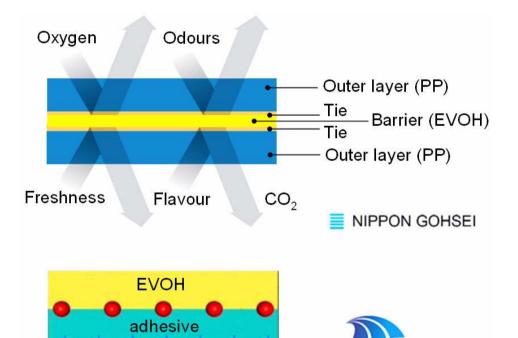
#### **Co-injection**

- Possible barrier materials
  - PA
  - EVOH
  - PVDC (Saran): Polyvinylidenchlorid (DOW)
  - Overmoulding of tin foil on both sides



EVOH: copolymer consisting of ethylene and vinyl alcohol

Humidity dependent O2-Permeability




Mitsui Chemicals

#### Challenges

• Create a very thin EVOH barrier layer (about 0,05mm) to be competetive against glass and tin formats.

Get the adhesive bonding between the layers



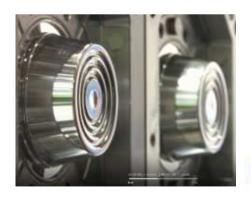
N N N N N Skin material PE or PP



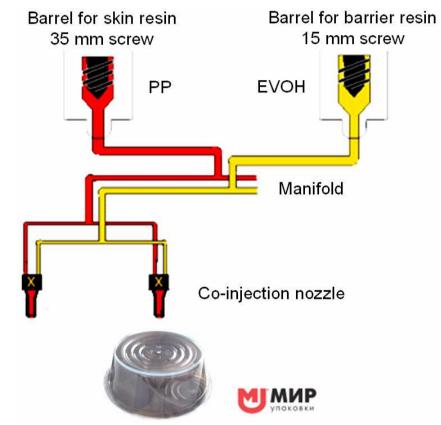
# Production cell for barrier co-injection technology

- The co-injection technology is a revolutionary alternative to traditional packaging methods
- All electric high performance machines guarantee maximum output and low energy consumption
- High precision servo driven injection units secures that the barrier layer is reliably implemented up to the edge
  - Use of a small 15mm screw for the injection of barrier layer




e-motion 310H/50V/180 T combi






#### **Mould and hotrunner technology**

- Mould with 2 cavities for a pet food container
- Specially designed co-injection nozzles and manifold technology that combines melt streams and provides balanced fill







0.06 mm

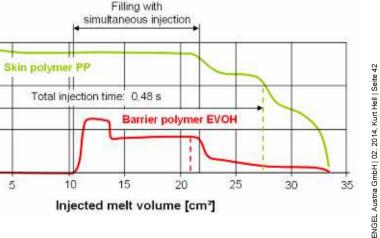
Melt volume stream [cm<sup>3/s</sup>]

60

40

20

0


0

5

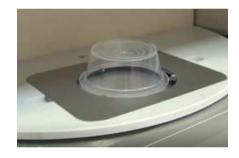
#### **Process**

- Cycle time: 5,5 sec.
- Part weight: 8,7g

- Simultaneous co-injection
  - Minimize barrier layer wall thickness








ENGEL

**Barrier watcher** | In-line Inspection of Layers

- Specialized camera system detecting insufficient layer thickness and distribution, holes and defects in comparison to the reference image
- Capable of inspecting EVOH barriers and additional barrier materials











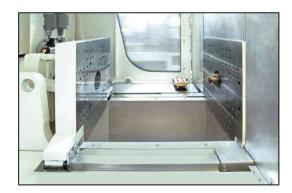


## **Overview**



- Thin wall packaging in the 20th century
- Trends and requirements for thin wall packaging today
- Challenges of modern food packaging
- Efficient manufacturing with all electric machines
- Design requirements
- Information and decoration/IML
- Increasing shelf life/barrier technology
- Sustainability aspects




#### **Being sustainable through:**

• Clean manufacturing

Electric machines | Clean (sealed toggle) | Oilfree mould area









#### **Being sustainable through:**

#### • Lean manufacturing & Reducing carbon footprint

Traditional production: 4 steps



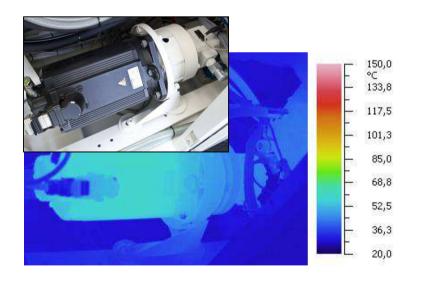


Manufacturing footprint: around 250 m<sup>2</sup>



Injection moulding: 1 Step






Footprint: 60 m<sup>2</sup> for comparable output, being 75% less production area

#### **Being sustainable through:**

• Manufacturing performance: saving energy, reducing oil

Drive side: **ecodrive** 



Injection side: Insulation









#### **Being sustainable through:**

#### Using biodegradable resins

- Processing biodegradable materials
- Advantages
  - Resin biodegradable within 6 months
  - Products are compostable
  - No shrinkage

#### • Disadvantages

- Difficult to process with thin walls (small process window, resin degrading with high process temperatures, not easy to fill



# High performance, efficient and flexible all electric injection moulding technologies for thin-wall containers



ENGEL